LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION - STATISTICS		
SECOND SEMESTER – APRIL 2013		
ST 2814/2811 - ESTIMATION THEORY		
Date : 26/04/2013 Dept. No.	Max. : 100 Marks	
Part – A		
Answer all the questions:	(10 x 2 = 20)	
 Define a statistic with an example. Examine whether the family N (0,σ²) is complete. Define CAN estimator. Obtain the sufficient estimator when a random sample is from b(1, θ), 0<θ<1. Explain the concept of likelihood function. Obtain the method of moments estimator of θ when a random sample is from f(x)= θ e^{-θx}, x>0. State Rao-Blackwell theorem. Write the unbiased estimator of σ² when a random sample of size n is drawn from N(μ, σ²). Define ancillary statistic. What is the best estimator of θ in Bayesian estimation with respect to Squared error loss function? Absolute error loss function? 		
Part – B Answer any 5 questions:	$(5 \times 8 = 40)$	
11) Let X_1 , X_2 be independent random variables whose distribution depend on θ . Then show that $I_{(X_1,X_2)}(\theta) = I_{(X_1)}(\theta) + I_{(X_2)}(\theta)$		
12) State and prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness.		
13) Let X_1 , X_2 , X_n be a random sample from $f(x) = \frac{1}{\sigma} e^{\frac{-(x-\mu)}{\sigma}}$, $\mu < x$. Obtain the mle of μ and σ .		
14) Let X_1 , X_2 , X_n be a random sample from N(μ , σ^2). Obtain the minimal sufficient statistic.		
15) Let the r.v X have $P(x) = \begin{cases} \theta, & x = -1 \\ (1 - \theta)^2 \theta^x, & x = 0, 1, 2, \dots 0 < \theta < 1 \\ \text{Show that the family is not complete but boundedly complete.} \end{cases}$		
16) Let X_1 , X_2 , X_n be a random sample from N(0, θ^2). Obtain the Cramer-Rao lower bound for estimating θ^2 .		
17) Let δ_0 be a fixed member of U_g . Then prove that $U_g = \{\delta_0 + u u \in U_0\}$.		
<u> </u>		

18) Let X_1 , X_2 , X_n be a random sample from N(μ , 1). Let μ have the potential Obtain the Bayes estimator of μ .	prior distribution N(0, 1).
PART – C	
Answer any 2 questions	2 x 20= 40
 19)a) State and prove Lehman-Scheffe theorem. b) Let X₁, X₂, X_n be a random sample from b(1, θ), 0<θ<1. Obtain c) Let δ₁ and δ₂ be the UMVUEs of g₁(θ) and g₂(θ) respectively. State UMVUE of a₁ g₁(θ)+ a₂ g₂(θ). 	
20)a) State and prove Basu's theorem. b) Let X_1 , X_2 , X_n be a random sample from N(μ , σ^2). Show that \overline{X}_1	\overline{X} and S^2 are independent
c) Let X_1 , X_2 ,, X_n be a random sample from $f(x) = \frac{1}{\theta} e^{\frac{-x}{\theta}}$, x>0. Show	
statistic is independent of $X_1 / \sum X_i$.	
21)a) Let X_1, X_2, \dots, X_n be a random sample from E(θ , 1). Show that MI	(8+6+6) LE of θ is not CAN but
 consistent. Suggest a CAN estimator for θ. b) Let X₁, X₂, X_n be a random sample from b(1, θ), 0<θ<1. Let θ Obtain the Bayes estimator of b) θ 	have the prior Beta(α , β).
$ii) \theta(1-\theta)$	
	(10+10)
22) a) Explain EM algorithm in detail.	(10,10)
b) Explain Jacknife estimator in detail.	(10+10)
	(10+10)
