Part - A

Answer all the questions:

1) Define a statistic with an example.
2) Examine whether the family $\mathrm{N}\left(0, \sigma^{2}\right)$ is complete.
3) Define CAN estimator.
4) Obtain the sufficient estimator when a random sample is from $b(1, \theta), 0<\theta<1$.
5) Explain the concept of likelihood function.
6) Obtain the method of moments estimator of θ when a random sample is from $\mathrm{f}(\mathrm{x})=\theta e^{-\theta x}, \mathrm{x}>0$.
7) State Rao-Blackwell theorem.
8) Write the unbiased estimator of σ^{2} when a random sample of size n is drawn from $N\left(\mu, \sigma^{2}\right)$.
9) Define ancillary statistic.
10) What is the best estimator of θ in Bayesian estimation with respect to
i) Squared error loss function?
ii) Absolute error loss function?

Part - B

Answer any 5 questions:
11) Let X_{1}, X_{2} be independent random variables whose distribution depend on θ. Then show that $I_{\left(X_{1}, X_{2}\right)}(\theta)=I_{\left(X_{1}\right)}(\theta)+I_{\left(X_{2}\right)}(\theta)$
12) State and prove a necessary and sufficient condition for an estimator to be UMVUE using uncorrelatedness.
13) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{f}(\mathrm{x})=\frac{1}{\sigma} e^{\frac{-(x-\mu)}{\sigma}}, \mu<\mathrm{x}$. Obtain the mle of μ and σ.
14) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Obtain the minimal sufficient statistic.
15) Let the r.v X have

$$
\mathrm{P}(\mathrm{x})=\left\{\begin{array}{cc}
\theta, \quad x=-1 \\
(1-\theta)^{2} \theta^{x}, & x=0,1,2, \ldots 0<\theta<1
\end{array}\right.
$$

Show that the family is not complete but boundedly complete.
16) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{N}\left(0, \theta^{2}\right)$. Obtain the Cramer-Rao lower bound for estimating θ^{2}.
17) Let δ_{0} be a fixed member of U_{g}. Then prove that $U_{g}=\left\{\delta_{0}+u \mid u \in U_{0}\right\}$.
18) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{N}(\mu, 1)$. Let μ have the prior distribution $\mathrm{N}(0,1)$. Obtain the Bayes estimator of μ.

PART - C

Answer any 2 questions
19)a) State and prove Lehman-Scheffe theorem.
b) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{b}(1, \theta), 0<\theta<1$. Obtain the UMVUE of $\theta(1-\theta) / \mathrm{n}$.
c) Let δ_{1} and δ_{2} be the UMVUEs of $g_{1}(\theta)$ and $g_{2}(\theta)$ respectively. Show that $a_{1} \delta_{1}+a_{2} \delta_{2}$ is the UMVUE of $a_{1} g_{1}(\theta)+a_{2} g_{2}(\theta)$.
20)a) State and prove Basu's theorem.
b) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Show that \bar{X} and S^{2} are independent.
c) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{f}(\mathrm{x})=\frac{1}{\theta} e^{\frac{-x}{\theta}}, \mathrm{x}>0$. Show that the complete sufficient statistic is independent of $X_{1} / \sum X_{i}$.
21)a) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{E}(\theta, 1)$. Show that MLE of θ is not CAN but consistent. Suggest a CAN estimator for θ.
b) Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample from $\mathrm{b}(1, \theta), 0<\theta<1$. Let θ have the prior $\operatorname{Beta}(\alpha, \beta)$. Obtain the Bayes estimator of
b) θ
ii) $\theta(1-\theta)$
22) a) Explain EM algorithm in detail.
b) Explain Jacknife estimator in detail.

